skip to main content


Search for: All records

Creators/Authors contains: "Archibald, Sally"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Grasslands, which constitute almost 40% of the terrestrial biosphere, provide habitat for a great diversity of animals and plants and contribute to the livelihoods of more than 1 billion people worldwide. Whereas the destruction and degradation of grasslands can occur rapidly, recent work indicates that complete recovery of biodiversity and essential functions occurs slowly or not at all. Grassland restoration—interventions to speed or guide this recovery—has received less attention than restoration of forested ecosystems, often due to the prevailing assumption that grasslands are recently formed habitats that can reassemble quickly. Viewing grassland restoration as long-term assembly toward old-growth endpoints, with appreciation of feedbacks and threshold shifts, will be crucial for recognizing when and how restoration can guide recovery of this globally important ecosystem. 
    more » « less
  2. Fire is an important climate-driven disturbance in terrestrial ecosystems, also modulated by human ignitions or fire suppression. Changes in fire emissions can feed back on the global carbon cycle, but whether the trajectories of changing fire activity will exacerbate or attenuate climate change is poorly understood. Here, we quantify fire dynamics under historical and future climate and human demography using a coupled global climate–fire–carbon cycle model that emulates 34 individual Earth system models (ESMs). Results are compared with counterfactual worlds, one with a constant preindustrial fire regime and another without fire. Although uncertainty in projected fire effects is large and depends on ESM, socioeconomic trajectory, and emissions scenario, we find that changes in human demography tend to suppress global fire activity, keeping more carbon within terrestrial ecosystems and attenuating warming. Globally, changes in fire have acted to warm climate throughout most of the 20th century. However, recent and predicted future reductions in fire activity may reverse this, enhancing land carbon uptake and corresponding to offsetting ∼5 to 10 y of global CO 2 emissions at today’s levels. This potentially reduces warming by up to 0.11 °C by 2100. We show that climate–carbon cycle feedbacks, as caused by changing fire regimes, are most effective at slowing global warming under lower emission scenarios. Our study highlights that ignitions and active and passive fire suppression can be as important in driving future fire regimes as changes in climate, although with some risk of more extreme fires regionally and with implications for other ecosystem functions in fire-dependent ecosystems. 
    more » « less
  3. Modeling fire spread as an infection process is intuitive: An ignition lights a patch of fuel, which infects its neighbor, and so on. Infection models produce nonlinear thresholds, whereby fire spreads only when fuel connectivity and infection probability are sufficiently high. These thresholds are fundamental both to managing fire and to theoretical models of fire spread, whereas applied fire models more often apply quasi-empirical approaches. Here, we resolve this tension by quantifying thresholds in fire spread locally, using field data from individual fires ( n = 1,131) in grassy ecosystems across a precipitation gradient (496 to 1,442 mm mean annual precipitation) and evaluating how these scaled regionally (across 533 sites) and across time (1989 to 2012 and 2016 to 2018) using data from Kruger National Park in South Africa. An infection model captured observed patterns in individual fire spread better than competing models. The proportion of the landscape that burned was well described by measurements of grass biomass, fuel moisture, and vapor pressure deficit. Regionally, averaging across variability resulted in quasi-linear patterns. Altogether, results suggest that models aiming to capture fire responses to global change should incorporate nonlinear fire spread thresholds but that linear approximations may sufficiently capture medium-term trends under a stationary climate. 
    more » « less
  4. null (Ed.)
    Abstract. Global fire-vegetation models are widely used to assessimpacts of environmental change on fire regimes and the carbon cycle and toinfer relationships between climate, land use and fire. However,differences in model structure and parameterizations, in both the vegetationand fire components of these models, could influence overall modelperformance, and to date there has been limited evaluation of how welldifferent models represent various aspects of fire regimes. The Fire ModelIntercomparison Project (FireMIP) is coordinating the evaluation ofstate-of-the-art global fire models, in order to improve projections of firecharacteristics and fire impacts on ecosystems and human societies in thecontext of global environmental change. Here we perform a systematicevaluation of historical simulations made by nine FireMIP models to quantifytheir ability to reproduce a range of fire and vegetation benchmarks. TheFireMIP models simulate a wide range in global annual total burnt area(39–536 Mha) and global annual fire carbon emission (0.91–4.75 Pg C yr−1) for modern conditions (2002–2012), but most of the range in burntarea is within observational uncertainty (345–468 Mha). Benchmarking scoresindicate that seven out of nine FireMIP models are able to represent thespatial pattern in burnt area. The models also reproduce the seasonality inburnt area reasonably well but struggle to simulate fire season length andare largely unable to represent interannual variations in burnt area.However, models that represent cropland fires see improved simulation offire seasonality in the Northern Hemisphere. The three FireMIP models whichexplicitly simulate individual fires are able to reproduce the spatialpattern in number of fires, but fire sizes are too small in key regions, andthis results in an underestimation of burnt area. The correct representationof spatial and seasonal patterns in vegetation appears to correlate with abetter representation of burnt area. The two older fire models included inthe FireMIP ensemble (LPJ–GUESS–GlobFIRM, MC2) clearly perform less wellglobally than other models, but it is difficult to distinguish between theremaining ensemble members; some of these models are better at representingcertain aspects of the fire regime; none clearly outperforms all othermodels across the full range of variables assessed. 
    more » « less